Non-DNA-binding platinum anticancer agents: Cytotoxic activities of platinum-phosphato complexes towards human ovarian cancer cells.
نویسندگان
چکیده
DNA is believed to be the molecular target for the cytotoxic activities of platinum (Pt) anticancer drugs. We report here a class of platinum(II)- and platinum(IV)-pyrophosphato complexes that exhibit cytotoxicity comparable with and, in some cases, better than cisplatin in ovarian cell lines (A2780, A2780/C30, and CHO), yet they do not show any evidence of covalent binding to DNA. Moreover, some of these compounds are quite effective in cisplatin- and carboplatin-resistant cell line A2780/C30. The lack of DNA binding was demonstrated by the absence of a detectable Pt signal by atomic absorption spectroscopy using isolated DNA from human ovarian cells treated with a platinum(II)-pyrophosphato complex, (trans-1,2-cyclohexanediamine)(dihydrogen pyrophosphato) platinum(II), (pyrodach-2) and from NMR experiments using a variety of nucleotides including single- and double-stranded DNA. Furthermore, pyrodach-2 exhibited reduced cellular accumulations compared with cisplatin in cisplatin- and carboplatin-resistant human ovarian cells, yet the IC(50) value for the pyrophosphato complex was much less than that of cisplatin. Moreover, unlike cisplatin, pyrodach-2 treated cells overexpressed fas and fas-related transcription factors and some proapoptotic genes such as Bak and Bax. Data presented in this report collectively indicate that pyrodach-2 follows different cytotoxic mechanisms than does cisplatin. Unlike cisplatin, pyrodach-2 does not undergo aquation during 1 week and is quite soluble and stable in aqueous solutions. Results presented in this article represent a clear paradigm shift not only in expanding the molecular targets for Pt anticancer drugs but also in strategic development for more effective anticancer drugs.
منابع مشابه
A Survey of Anticancer Effect of Some Five- and Six-Membered Palladium (II) Complexes (Containing Bidentate Phosphorus Ligands) on Caco-2 Colon Cancer Cell Line
Background and Objectives: Transition metal complexes possess a variety of biological and pharmacological activities, such as antitumor, antimicrobial, anti-inflammatory, anti-diabetic, and free radical scavenging. Many studies have been carried out on platinum-based chemotherapy agents, however, most attention has been paid to non-platinum metal-based agents in order to find different metal comp...
متن کاملThe binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands
The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes ...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملLuminescent iminophosphorane gold, palladium and platinum complexes as potential anticancer agents.
A series of coordination gold(III), palladium(II), and platinum(II) complexes with a luminescent iminophosphorane ligand derived from 8-aminoquinoline [Ph3P=N-C9H6N] (1), have been synthesized and structurally characterized. The coordination palladium(II) and platinum(II) compounds can evolve further, under appropriate conditions, to give stable cyclometalated endo species [M{κ3-C,N,N-C6H4(PPh2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 47 شماره
صفحات -
تاریخ انتشار 2008